Combination Circuits

Often an electric circuit is wired partially in series and partially in parallel. The key to determining the current, voltage, and power in such a case is to deal with the circuit in parts, with the resistances in each part being in series or parallel with each other.

Example 1

The diagram below shows a circuit composed of a 24 V battery and four resistors, whose resistances are $110,180,220$, and 250Ω. Find

a) the total current supplied by the battery.
b) the voltage between points A and B in the circuit.

Circuits Worksheet \#7

1. In each of the following diagrams, determine the equivalent resistance between points A and B.
a) (99.8Ω)

b) (6.76Ω)

c) (4.60Ω)

2. Determine the power dissipated in the 5.0Ω resistor in the circuit shown in the drawing. (2.2 W)

3. The current in the 8.00Ω resistor in the drawing is 0.5 A . Find the current in (a) the 20.0Ω resistor and in (b) the 9.00Ω resistor. ($0.75 \mathrm{~A}, 2.11 \mathrm{~A}$)

