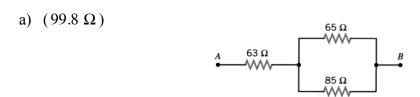
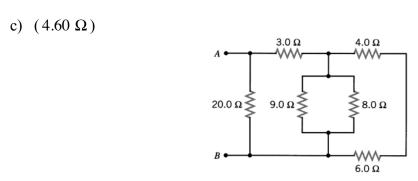

Combination Circuits

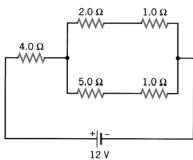
Often an electric circuit is wired partially in series and partially in parallel. The key to determining the current, voltage, and power in such a case is to deal with the circuit in parts, with the resistances in each part being in series or parallel with each other.

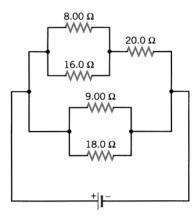
Example 1


The diagram below shows a circuit composed of a 24 V battery and four resistors, whose resistances are 110, 180, 220, and 250 Ω . Find


- a) the total current supplied by the battery.
- b) the voltage between points A and B in the circuit.

Circuits Worksheet #7


1. In each of the following diagrams, determine the equivalent resistance between points A and B


b) (6.76Ω) A 2.00Ω 4.00Ω 6.00Ω 10.0Ω 8.00Ω 5.00Ω 3.00Ω

2. Determine the power dissipated in the 5.0 Ω resistor in the circuit shown in the drawing. (2.2 W)

3. The current in the 8.00 Ω resistor in the drawing is 0.5 A. Find the current in (a) the 20.0 Ω resistor and in (b) the 9.00 Ω resistor. (0.75 A, 2.11 A)

